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ABSTRACT

A neutronics analysis of the transition phase of an unprotected
loss-of-flow accident in CRBRP was performed by AP/ANL. This study
evaluates the recriticality potential during the accident progression
beyond the initiating phase into the transition melt-out phase and
large scale pool phase. The neutronics models follow as closely as
possible the best estimate scenarios for the transition phase using
the reference CRBRP PSAR design at EOC-4 conditions. S-4 transport
theory with isotropic scattering was used to calculate the degree of
recriticality for a wide range of disrupted core configurationms.
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Introduction

This report documents the neutronics analysis of the recriticality
potential of the post-initiating phase of an unprotected loss-of-flow accident
in CRBRP at EOC-4 (end-of-cycle 4) conditions. It also represents a continua-
tion of neutronics analysis previously done for the transition phase of an
unprotected LOF accident at BOCl in CRBRP! and is based on an assessment of
HCDA energetics in the CRBRP heterogeneous reactor core as reported by General
Electric.?

Computational Methodology

The objective of the AP/ANL analysis of CRBRP EOC-4 transition phase has
been to retain as much rigour in the computational modeling as possible while
limiting computational costs. As noted in the analysis of BOC-1, the presence
of large internal voids which are encountered in significantly disrupted core
configurations makes the use of diffusion theory suspect. In order to
adequately handle large internal voids, S—-4 transport with isotropic scattering
was selected for all transition phase analysis.

Cross Section Processing

The basic cross section data used for the neutronics analysis were
generated from the ENDF/B-IV data files3 using the MC2-2/SDX%,5 code system.
Specific EOC-4 compositions were used to generate EOC-4 broad group libraries.
The base library of 171-groups (sau = 0.l1) was generated using a weighting
spectrum from a 2040-group slowing down calculation for an appropriate Pu/U
fueled LMFBR core composition.® Using the fine-group base library, broad
group libraries were generated for EOC-4 compositions with the SDX code.
Resonance self-shielding effects were accounted for in voided and nonvoided
driver, internal blanket, and radial blanket assemblies. Eight group and
twenty group libraries were obtained for operating conditions (1500°K) and for
an elevated temperature (3000°K). Table I shows both group structures.

Modeling Considerations

The CRBRP heterogeneous core is expected to achieve a level of permanent
subcriticality in a loss-of-flow (LOF) event by virtue of fuel removal from
the core even under the hypothetical assumption that both shutdown systems
fail to function. Analysis performed by S. K. Rhow, et al.,2 shows adequate
fuel removal would occur during the melt-out period after the initiating phase
of the unprotected LOF event. Based on this analysis specific cases have been
defined to develop a better understanding of the neutronics behavior of
disrupted core configurations.

For this study the modeling considerations for the EOC-4 LOF transition
phase analysis are consistent with those used for the BOC-1 tramsition phase
analysis. The reference CRBRP design and EOC-4 mass inventories were taken
from the CRBRP PSAR? and are given in Table II. The corresponding full RZ
neutronics model for EOC-4 CRBRP is shown in Fig. 1. This model represents
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the base case on which disrupted configuration criticality potentials are
determined.

For disrupted core fuel assemblies thick steel blockages are assumed to
form in the Upper Axial Blanket (UAB) and at the Lower Axial Blanket (LAB)/
core interface. These blockages are assumed sufficient to prevent further
fuel dispersal through the assembly. In this analysis 1/3 of the driver clad
and wire wrap is projected to relocate into the UAB region contributing to a
2.2 cm thick solid steel blockage inside the hexcan at a height of 20 cm above
the UAB/core interface with the remaining steel homogenized over the 17.8 cm
of available UAB volume below the blockage. In addition 1/3 of the driver
assembly clad and wire wrap is projected to relocate downward to form a steel
blockage 3 cm thick below the lower axial blanket/ core interface. The excess
residual steel is homogenized with the 1/3 clad and wire wrap that remains in
the core region and mixes with the molten fuel and hexcan.

The failure of the hexcan wall boundary through rupture and/or melt
through is assumed to make it possible for the pressurized internal assembly
pool to flow into any interstitial volume between assemblies. Vapor pressure
buildup is the primary driving force for dispersal of the localized fuel-steel
pools into the interstitial volume available below the core/LAB interface.
This corresponds to a 19.7 in. penetration length (14 in. LAB + 5.7 in. below
blanket into shield block) in 253 subassemblies with an average interassembly
gap width of 0.185 in. This translates into an available interstitial volume
for fuel displacement below the core plus radial blanket of 185.9 liters and
if the radial reflector is included of 333.6 liters.

The overheating and melt through of the control rod hexcan wall can
lead to local entry of molten fuel into the control assembly below the active
absorber rod location. Downward penetration into the shield and orifice zones
is unrestricted.

Neutronics Analysis of EOC-4 Transition Phase

Neutronics calculations were done for several disruptive core configura-
tions assuming CRBRP EOC-4 unprotected LOF transition phase conditions. A
brief description of each configuration with respect to degree and location of
fuel removal is given in Table III. The base case represents the CRBRP at
EOC-4 under operating conditions. The CRBRP EOC4 fuel inventories are taken
from the CRBRP PSAR.

Cases 1A Through 1C

The initial disrupted configuration of the transition phase, case 1A, as
shown in Fig. 2 represents the condition in which the driver fuel is assumed
to slump, melt, and mix with the available steel to form a single pool, single
phase, fully dense composition. The internal blankets, control assemblies,
and radial blanket assemblies remain intact. Steel blockages are assumed to
form in the driver assemblies at 20 cm above the UAB/core interface and at the
LAB/core interface. Of the 40% of the slumped driver fuel 10% flows through
the interstitial gaps to below the core, lower axial blanket, and lower radial
blankets, and 30% into the lower radial shield. All fission products in molten
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fuel are assumed to vent from the system. This is a conservative assumption
that holds for all the following cases. For a 407% removal of fuel from the
active core region the recriticality potential is -5.82$. A description of
the recriticality potential for all cases is given in Table IV.

Case 1B shown in Fig. 3 is the same as lA except that of the 50% of the
driver fuel removed 10% is relocated to below the core into the lower axial
and radial blankets, and 40% into the radial shield. The removal of an addi-
tional 10% of driver fuel reduces the recriticality potential to =22.96S.
Case 1C shown in Fig. 4 is the same as lA except that only 30% of the driver
fuel is relocated with 10% moving to below the core and into the lower axial
and radial blankets and 20% moving to the lower radial shield. The recriti-
cality potential increases to +8.62$.

Case 2A

In case 2A the upper axial blanket fuel plus clad and wire wrap fall and
mix with the molten driver fuel forming a single level, single phase pool, see
Fig. 5. The internal blankets, control assemblies, and radial blankets remain
intact, while 20% of the original driver fuel is relocated to below the core
with 6% in the lower axial and radial blankets and 14% in the radial shield
regions. The addition of axial blanket fuel and structure to the molten
driver pool acts as a diluent. The resulting system is -12.46$ subcritical.

Case 2B

In case 2B the internal blankets, control assemblies, and lst row of the
radial blanket melt and mix with the driver fuel. Thirty percent of the
driver fuel is relocated, of which 7% flows to below the core into the lower
axial and radial blankets, 8% flows to below the control assemblies, and 15%
flows into the lower radial shield. This configuration is shown in Fig. 6.
The slumping of the internal blankets has a positive effect on recriticality
but is more than compensated for by the diluent effect of the mixing with the
control assemblies, driver fuel, and radial blanket. The net effect is a
=5.12% subcritical system.

Cases 3A Through 3C

In case 3A 50% of the driver fuel is relocated to below the core with 10%
in the lower axial and radial blankets, 8% below the control assemblies and
32% in the lower radial shield. The internal blankets and control assembly
channels melt and mix with the driver fuel, see Fig. 7. The steel content of
the core is reduced by 50% with the displaced steel mixing uniformly with the
displaced core material. The resulting configuration is -11.28$ subcritical.

Case 3B is similar to 3A except the original steel content of the core,
internal blankets, and control assemblies separates from the fuel and forms a
pool of molten steel above a pool of fuel. This acts as a strong reflector
and increases the criticality to +8.15$. This configuration is shown in
Fig. 8.
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In case 3C the upper axial blanket, cladding and wire wrap fall and mix
with the core pool as described for case 3B. The steel and fuel continue to
separate forming separate pools but the increased dilution caused by the
addition of upper axial blanket fuel cause the recriticality to decrease to
-8.57$, see Fig. 9.

Case 4A

Case 4A is similar to case 1C in that 30% of the driver fuel is removed
to below the core, with 10% in the lower axial and radial blankets, and 20% in
the lower radial shield (20%); while the internal blankets and control assem-
blies remain intact. But, an additional 19% of the driver fuel is relocated
to in-between the internal blanket rods. This configuration is shown in Fig.
10. The relocation of fuel from a high worth region to a lower worth region
reduces the criticality to -0.91$.

Cases 5A Through 5C

Case 5A is similar to case 1C in that 30% of the driver fuel is relocated
to below the core, with 10% in the lower axial and radial blankets and 20% in
the lower radial shield. The internal blankets and control assemblies are
intact but the slumped core pool is in a state of boilup with a uniform void
profile. A uniform void profile results in the remaining (70%) driver fuel
and structure to be uniformly distributed throughout the available driver
volume. This substantial dilution of fuel leads to a -26.20$ subcritical
condition. This configuration is shown in Fig. 1ll.

The extreme sensitivity of recriticality to configuration is apparent in
case 5B. This case is similar to 5A except that the core pool experiences
boil up with a linear void profile rather than a uniform void profile, see
Fig. 12. A linear void profile is described as a 15 cm thick single—phase
layer at the bottom of the pool with the remainder of the core material dis-
tributed with a uniformly increasing void fraction (i.e. 20%, 40%, 60%, 80%,
100% void). A linear void profile leads to a supercritical +0.60$ condition.
The change in configuration, from a no boilup single phase core to boilup with
a linear void profile, to boilup with a uniform void profile with all other
factors remaining constant, gives a shift in criticality of from +8.62$ (1C)
to +0.60% (5B) to -26.20$ (5A). This is an extremely large change considering
the fact that the total mass of fuel in the core region remains the same.
Another interesting occurrence can be seen in Fig. 13. This figure shows the
total flux contours for case 5B. The peak flux occurs in regions 6b which
have a lower density of fuel than regions 6a. The movement of fuel from
region 6a to the lower part of 6b would be a movement from a lower worth
region to a higher worth region and would result in a more critical configura-
tion. In general, to a first order approximation, the peak flux occurs at the
center of mass for the active core zone. This implies that with less fuel
removal to below the core and with a thinner fully dense single phase layer
the peak flux position could be significantly moved into the less dense fuel
zones. This makes the evaluation a recriticality potential very sensitive
boilup scenario and selected void profiles.
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Case 5C is similar to 5B except that only the inner core zones experience
boilup with a linear void profile. This configuration is shown in Fig. l4.
The boilup of the inner core zones gives a criticality of +7.64$. This is
only slightly less than the nonboilup condition and results from reduced
leakage out of the inner core zones and the relatively smaller mass of fuel in
the inner core zones when compared to that of the outer core zones.

Cases 6A Through 6C

These cases also test the criticality sensitivity to boilup. In case 6A
there is no fuel removal from the core. The internal blankets and control
assemblies are intact. The outer core is fully boiled up with a uniform void
fraction and the two inner pools (originally fully boiled up) are compacted
with a 10 cm single-phase layer at the bottom and a void space at the top.
This configuration is shown in Fig. 15. The criticality is +11.668$.

Case 6B shown in Fig. 16 is the same as 6A except that the depth of
the single-phase layer in the inner pools is 20 cm. The increase in fuel
compaction leads to a slightly more critical condition of +12.54$.

Likewise case 6C is the same as 6A except that the depth of the single-
phase pool layer is 30 cm. This configuration is shown in Fig. 17 and has a
criticality condition of +14.20S$.

Cases 7A and 7B

In case 7A 50% of the driver cladding and wire wrap are relocated to the
UAB and the remaining 50% to the LAB regions. All driver fuel, remaining
hexcan steel internal blankets and control assemblies are homogenized forming
a single-phase pool. No control remains in the core and all core fission
products are neglected. This configuration is shown in Fig. 18 and has a
criticality condition of +50.60S.

In case 7B the configuration is the same as 7A except that the core

fission products are included in the single phase pool. This results in a
reduction in criticality to +44.61$.

Summary of Results

A special effort was made in this analysis to be as rigorous as possible
in the modeling. In order to minimize the errors introduced by complex con-
figurations and streaming paths S-4 transport calculations were used and
special care was taken to insure that fuel masses were conserved when moved
from region to region. In general this analysis reconfirms observations made
in the transition phase neutronics analysis at BOC-l1 for an unprotected LOF in
CRBRP.! The removal of an adequate amount of fuel to the available intersti-
tial volumes below the core and core periphery can result in a subcritical
condition. For EOC-4 conditions the absolute amount of fuel removed to insure
subcriticality is slightly less (36%-40%) than what was needed for subcriti-
cality in BOC-1 (approximately 44%). The reason for this is that there is a
general shift in fissile inventory from the driver regioms to the internmal
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blanket regions for EOC-4. This results in a lowering of the fissile inven-
tory in driver regions of EOC-4 when compared with BOC-1 and hence a lessening
of the amount of fuel needed to be removed to achieve subcritcality.

Similar to what was seen for BOC-1 analysis the recriticality potential
for EOC-4 conditions is very sensitive to the actual configuration, boilup
scenario and void profile. Even with similar amounts of fissile material
within the core boundaries large variations in criticality are obtained with
variations in configuration.
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TABLE I. Group Structure for 8 and 20 Group
Cross Section Libraries

Broad Group 20 Group 8 Group
Energy, eV Library Library
1.0000 x 107 1 it
3.6788 x 10° 2

2.2313 x 108 3

1.3534 x 108 4 2
8.2085 x 10° 5

4.9787 x 10° 6 3
3.0197 x 10° 7

1.8316 x 10° 8 4
1.1109 x 10% 9

6.7380 x 104 10 5
4.0868 x 10“ 11

2.4788 x 104 it 6
1.5034 x 10% 13

9.1188 x 103 14 7
5.5309 x 103 15

3.3546 x 103 16 8
2.0347 x 103 ity

1.2341 x 103 18

4.5400 x 102 19

6.1442 x 10! 20
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TABLE II. Heavy Metal? Mass Inventory (kg) for CRBRP EOC-4

Inner Radial Axial
Driver Blankets (1) Blanket (1) Blankets

239py 1216.0 206.8 285.6 56.1
240py 278.5 8.0 11.3 1.2
241lpy 32,7 - - -

2‘02Pu 5.2 - = -

235y 5.4 11.6 21.3 7.8
238y 3421.0 7381.0 12936.0 4314.0
Fission Products 414.2 55.2 D57 6.8
Total Heavy Metal 5368.0 7662.6 13309.9 4385.9

aHeavy metal excludes oxygen.

(1) Includes axial extensions.



TABLE' I1II. EOC-4 LOF Transition Phase Disruptive Core Configurations

Configurations 1A-C 2A 2B 3A-B - 3 4A 5A-C 6A-C 7A-B

Fraction of Fuel

Removed from Core, % 30-50 20 30 . 50 50 30 30 - 0 0

Condition of Fuel in

Core Single ¢* Single ¢ Single ¢ Single ¢! single ¢ Single ¢ Boilup Boilup Single ¢

Condition of Mixed Mixed Mixed Mixed

Internal Blankets Intact Intact with fuel with fuel with fuel Intact? Intact Intact with fuel

Condition of i Mixed Mixed Mixed Mixed

Control Assemblies Intact Intact with fuel with fuel with fuel Intact Intact Intact with fuel

Conditions of lst Row Mixed Mixed

Radial Blanket Intact Intact with fuel Intact Intact Intact Intact Intact with fuel
Falls and Falls and

Conditions of Upper mixes with mixes with

Axial Blanket - Intact core Intact Intact core Intact Intact Intact Intact3

Location of Fuel
Removed from Core, X

Gaps between RS S/A 20-40 14 15 32 32 20 20 - -
Gaps below core and RB 10 6 7 10 10 10 10 = -
Control assemblies - = 8 8 8 = = - -

ISteel content in core reduced 50% in 3A and entire steel content of core is segregated to top of pool in 3B.
219% single ¢ pool mixture is frozen between IB rods in core region.

-3Cladding steel relocated to UAB (50%) and LAB (50%).

“Single phase mixture.

-0~
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TABLE IV. Transition Phase Neutronics Calculations
for CRBRP EOC-4 Core
AR
Configuration Keff P($)
Base Model CRBRP EOC-4 0.98387 =
1A CRBRP EOC-4 compositions with 40% of 0.96409 -0.01978
the slumped driver fuel removed to the -5.82$
interstitial gaps below the core, RB
and RS assemblies. All core fission
products are removed (a conservative
assumption that holds for all follow-
ing cases).
1B Same as lA except that 50% of driver 0.90580 -0.07807
fuel is relocated. -22.96%
1C Same as lA except that 30% of driver 1.01316 +0.02929
fuel is relocated. +8.62$
2A The upper axial blanket falls and 0.94150 -0.04237
mixes with the core fuel. 20% of the -12.46$
total driver fuel is relocated to RS
(14%) and below core gaps (6%).
2B The internal blankets, control rods, 0.96645 -0.01742
and lst row of radial blanket are -5.12$%
mixed with core fuel with 30% of the
core fuel relocated to the RS (15%),
below core gaps (7%) and control
assemblies (8%).
3A Internal blankets and control rods 0.94552 -0.03835
mix with fuel with 50% of driver fuel -11.28$
relocated to RS, below core and RB and
control assemblies. Steel content in
core is reduced by 50%.
3B Same as 3A except that entire initial 1.01157 +0.02770
core steel content is segregated to +8.15§
top of pool.
3C Same as 3B except that UAB is mixed 0.95472 -0.02915
with fuel remaining in core region. -8.57%
4A 30% of driver fuel relocated to RS 0.98077 -0.00310
(20%), and below core (10%) with an -0.91$

additional (19%) of driver fuel
relocated to between IB rods in core
region.
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TABLE IV. Transition Phase Neutronics Calculations
for CRBRP EOC-4 Core (Cont'd)
AK
Configuration Keff p($)
Base Model
5A Same as 1C except that pool is boiled 0.89477 -0.08910
up with a uniform void fraction. -26.208
5B Same as 5A except that pool is boiled 0.98590 +0.00203
up with a linear void profile with a +0.60$
15 cm single-phase layer at the bottom
of the pool.
5C Same as 5A except that only the two 1.00985 +0.02598
inner pools are boiled up. +7.64$
6A The outer core is fully boiled up with 1.02352 +0.03965
a uniform void fraction and the two +11.668
inner pools (originally fully boiled
up) are compacted with a 10 cm single
phase layer at the bottom and a void
space at the top. No fuel removal
from the core has occurred.
6B Same as case 6A except the depth of 1.02650 +0.04264
the single-phase layer in the inmer +12.548
pools is 20 cm.
6C Same as case 6A except the depth of 1.03215 +0.04828
the single-phase layer in the inner +14.208
pools is 30 cm.
7A Cladding steel relocated to UAB (50%) 1.15591 +0.17204
and LAB (50%) regioms. All driver +50.60%
fuel, hexcan steel and IB are homoge-
nized forming a single-phase pool. No
control remains in the core and all
core fission products are neglected.
7B Same as 7A except all core fission 1.13556 +0.15169

products are included.

+44.618
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Fig. l. CRBRP EOC-4 Transition Phase Base Case
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Fig. 3. CRBRP EOC-4 Transition Phase, Case 1B
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Fig. 4. CRBRP EOC-4 Transition Phase, Case 1C
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Fig. 5. CRBRP EOC-4 Transition Phase, Case 2A
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Fig. 6. CRBRP EOC-4 Transition Phase, Case 2B
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Fig. 8. CRBRP EOC-4 Transition Phase, Case 3B
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Fig. 9. CRBRP EOC-4 Transition Phase, Case 3C
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Fig. 10. CRBRP EOC-4 Transition Phase, Case 4A
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Fig. 12. CRBRP EOC-4 Transition Phase, Case 5B
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Fig. 14. CRBRP EOC-4 Transition Phase, Case 5C
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Fig. 15. CRBRP EOC-4 Transition Phase, Case 6A
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Fig. 16. CRBRP EOC-4 Transition Phase, Case 6B
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Fig. 17. CRBRP EOC-4 Transition Phase, Case 6C
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Fig. 18. CRBRP EOC-4 Transition Phase, Case 7A
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